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In this study, a systematic numerical procedure for identifying the model parameters of simulated mov-
ing bed (SMB) separation processes is developed. The parameters are first estimated by minimizing a
weighted least-squares criterion using experimental data from batch experiments, e.g. the time evolution
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of the concentration of elution peaks. Then, a cross-validation is achieved using data from experiments
in SMB operation. At this stage, the importance of a careful modelling of the dead volumes within the
SMB process is highlighted. In addition, confidence intervals on the estimated parameters and on the
predicted concentration profiles are evaluated.

© 2010 Elsevier B.V. All rights reserved.
istributed parameter system
ead volume

. Introduction

Conventional batch chromatography is relatively inefficient in
erms of adsorbent and solvent consumption and significant bene-
ts can be achieved by performing separation of high-added value
roducts, such as enantiomers produced in the pharmaceutical

ndustry, with a simulated moving bed (SMB) process. The SMB
rocess allows a counter-current movement of the liquid and the
olid to be achieved in order to increase the exchange capabilities
etween both phases. In practice, there is no real solid move-
ent but a “simulated” counter-current. Indeed, the process is

onstituted by several fixed beds in series and the simulated solid
ovement is achieved by periodically switching the inlet and out-

et valves by one column in the direction of the liquid flow. For
urther details about the process see [1].

This process has been used for large scale production in the
etrochemical and sugar industry since the 1950’s. However, the
ransfer of the SMB technology to the separation of fine chem-
cals is not immediate. Indeed, the conditions (characteristics of
he phases, interactions, etc.) are very different. Moreover, product

urity is also subject to tight constraints imposed by the phar-
aceutical and food regulatory organisations. Furthermore, the

ptimal operating conditions, which, by definition, are achieved if
he required purities are obtained with the highest possible produc-
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tivity and the smallest possible solvent consumption, are not easy
to determine. Most of the methods use a process model and are,
thus, subject to modelling errors. Besides, the optimal conditions
of the SMB operations are not robust to the changes of temperature,
of the feed composition, or of the feed flow rate. Hence, most of the
SMB units work on robust but suboptimal conditions. In this way,
they satisfy to the specifications most of the time despite the distur-
bances. Indeed, in general, there is no closed loop control. To study
these problems of selection of optimal operating conditions, pro-
cess control and monitoring of the SMB process, a precise model of
the plant is required. Indeed, such a model, able to reproduce with
details the operation of the process, may generate fictitious data to
tune and test the developed control and monitoring methods.

SMB models consist of mass balance equations in the liquid and
in the solid phase of the components to separate. A first-principle
SMB model usually includes the isotherm parameters, the column
porosity, the diffusion and/or the mass transfer coefficients. Typi-
cally, all these parameters are determined from batch experiments,
performed on analytical columns or on SMB columns.

In the literature, many comparisons have been performed
between experimental concentration profiles and simulated pro-
files. In most of the presented results, discrepancies are observed
between the experimental profiles and the simulated ones. Two
critical points are mentioned. On the one hand, the parameters are

often roughly estimated from few experiments [2–4] or modified
heuristically to minimize the difference between both profiles like
in [5,6]. On the other hand, the presence of the extra column dead
volumes influences significantly the concentration profiles [3,7,8].
In the literature, the extra column dead volumes are taken into

dx.doi.org/10.1016/j.chroma.2010.09.030
http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
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Darmstadt) and the solvent is a water/methanol solution
(70/30).

The process is equipped with two inlet pumps, one on the feed
flow (P4), and another on desorbent flow (P3). Two other pumps
360 V. Grosfils et al. / J. Chroma

ccount in the determination of the operating conditions by modi-
ying the equations of the triangle theory in some papers [9–12] but
he introduction of the dead volume in the SMB models is not often
onsidered [7,9]. Hence, there is obviously a need for a systematic
stimation procedure of the parameters of a SMB model and for an
ffective modelling of the extra column dead volumes.

The aim of this paper is to validate on experimental data the sys-
ematic approach to SMB processes model identification from batch
xperiments developed in [13]. The first step is the application of
he parameter identification from batch experiments described in
he reference. The second step is the cross-validation with SMB
xperiments so as to assess whether the parameters identified from
atch experiments may be used in a SMB model. This part of the
ork requires the development of an extra column dead volume
odel.
The method for parameter identification [13] is based on the

efinition of a cost function, characterizing the difference between
easured and simulated elution peaks, and its minimization using

n appropriate numerical method. The procedure has been devel-
ped after a systematic study of parameter identifiability. Thanks
o a sensitivity analysis, the number of elution peaks and the asso-
iated feed concentration needed to identify the parameters with
ood accuracy have been determined. Moreover, from a systematic
omparison of the identifiability of the parameters of the kinetic,
quilibrium dispersive and LDF models, together with the evalu-
tion of the computational load associated to such models, it has
esulted that a kinetic model yields an appropriate compromise
etween these criteria. Hence, the identification procedure con-
ists of the simultaneous identification of the isotherm parameters
nd the mass transfer coefficients of a kinetic model from two elu-
ion peaks, one at analytic concentration and a second one at the
ighest possible concentration given the solubility limit. Because
f the presence of local minima, a multi-start optimization proce-
ure is advisable. It consists in performing several identifications
rom different initial values of the parameters. Besides, confidence
ntervals for the estimated parameters and of the simulation errors
re computed.

The cross-validation with SMB experiments is performed on a
reparative SMB unit (CSEP C912, Knauer, Berlin, Germany). In this

nstallation, contrary to usual configurations where the inlet and
utlet ports are switched, a multifunctional valve allows the rota-
ion of the columns at each switching time. As pumps and detectors
re introduced between the columns of this SMB process, it turns
ut that the extra-column dead volumes cannot be neglected. In
his study, the model developed in [9] is adapted to this kind of
MB.

The text is organised as follows. The presentation of the consid-
red SMB process is given in Section 2. Section 3 is devoted to the
arameter estimation from batch experiments. SMB modelling is
iscussed in Section 4 and the cross-validation on SMB experiments

s performed in Section 5.

. System description

Fig. 1 shows the equivalent counter-current representation of
SMB process. The system is subdivided into 4 different sec-

ions delimited by several material flow outlets and inlets. The
wo inlets are the input of the mixture to be separated and the
nput of a desorbing solvent. The system also has two withdrawal
orts, one for the raffinate which is constituted mostly of the less

dsorbable component (component A) and another for the extract
hich mostly consists of the more retained component (compo-
ent B). The movement of the liquid and solid phases, as well as the
dsorption-desorption phenomena taking place in each section are
epicted in Fig. 1.
Fig. 1. Equivalent counter-current representation of a simulated moving bed pro-
cess for separation of a mixture with two species A and B – material flows and
adsorption–desorption phenomena in each section.

In this study, experiments were conducted in the Max-Planck-
Institut Dynamik Komplexer Technisher Systeme in Magdeburg
(Germany) on a preparative SMB unit (CSEP C912, Knauer, Berlin,
Germany). Fig. 2 shows a schematic representation of this unit.
Contrary to usual configurations where the inlet and outlet ports
are switched, the columns, connected to a multi-function valve,
are switched counter-current to the direction of the fluid flow.
This valve consists of a rotor and a stator with 24 ports each. The
ports are connected to each other by continuous channels. Hence,
all the devices inside the inner circle moves during the switching,
whereas, the rest is fixed. Note that this SMB plant is built for up to
12 columns but only 8 columns are introduced in the process used
in Magdeburg. The free ports are connected by short capillaries, as
described in [14] and the valve switches alternatively one and two
times successively during a full cycle (which is equal to 8 switching
periods).

The experiments consist in the separation of cyclopen-
tanone and cyclohexanone on 8 columns with 21.2 mm internal
diameter and 100 mm length. The stationary phase is a sil-
ica gel (LiChroprep RP-18, particle size 25–40 �m, Merck,
Fig. 2. Schematic representation of the Knauer CSEP C912 unit (Max Planck Institute,
Magdeburg, Germany) with 8 columns (position at start-up).
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re located in the circulating stream (P1 and P2). Besides, this SMB
rocess is also equipped with four UV detectors, two in the cir-
ulating stream (UV3 and UV4) and two on the product outlets
UV1 and UV2). They have been calibrated by injecting succes-
ive step changes of known concentration of cyclopentanone and
yclohexanone. In this study, it turns out that, in the considered
oncentration range, the UV signal is equal to a weighted sum of
he concentration of both products.

The following conventions will be used in the paper:

the columns are numbered (m = 1, . . ., 8); at the start-up, column
1 follows the desorbent input; column number 2 is the following
in the direction of the fluid flow, and so on;
a position (p) is defined as a place dedicated to the columns in
the SMB unit; some are really occupied by a column, others by a
capillary replacing the column.

olumns move when the valve rotates whereas positions are fixed.

. Parameter identification from batch experiments

.1. Introduction

In this section, the method to determine the parameters of a
MB model from elution peaks developed in [13] is transposed to
he studied separation. The experiments are performed directly on
he columns of the SMB process. Indeed, as it will be explained in
ection 3.4, it is more advisable to work directly with experimental
ata recorded on the SMB columns and not on analytical columns
o ensure that the porosity used in the estimation of the isotherm
arameters is the same as the porosity of the SMB. Moreover, it is
ssumed that all the columns of the SMB unit have the same prop-
rties and hence the same parameters. Therefore, identification is
erformed from experiments on one of the SMB columns only. This
ypothesis will be discussed in Section 5.

Hereafter, the description of the experiments is given before the
odelling of the elution experiments. Then, the set of parameters

o be identified by an optimization method is presented. The state-
ent and the solution of the identification problem follow. Finally,

arameter estimation is performed from batch data.

.2. Batch experiments

In our particular case, column 2 which is followed by the detec-
or UV3 is chosen for the batch experiments. By rotating the valve,
t is placed after pump P3 (cf. Fig. 2). A mixture of cyclopentanone
the less retained component, called A) and cyclohexanone (the

ost adsorbed component, called B) is introduced in the column
hanks to a manual injection valve associated to pump P3. Elution
eaks are measured at the end of the column with detector UV3.

To reproduce the conditions of enantiomer separations, the
njected concentration of component A is equal to the injected
oncentration of component B.

Two data sets are used for each parameter estimation, one
esulting from an injection at low concentration, called S1, the other
rom an injection at high concentration, called S2. The injected con-
entrations are prepared volumetrically by the user. The smallest
oncentration has been chosen high enough to be detectable and
he highest concentration to be below the limit of solubility. The
ow rate and the injected volume are the same for each experiment.

mes
Letting yS�
(t), � = 1, 2, denote the measured signal associ-

ted to the input concentration cF,i,�, i = A, B, the data set S� can be
efined by

� = {ymes
S�

(t�(h)), h = 0, 1, . . . , M� − 1, t�(h) < t�(h + 1)}
A 1217 (2010) 7359–7371 7361

where the injection is assumed to take place at time t = t�(0). M� is
the number of measurements in data set S�.

3.3. Modelling of an elution experiment

In this section, the model equations necessary to simulate an
elution experiment are presented. First the column model and the
inlet concentration profile are described. Then the isotherm model
is presented and finally the measurement equation which repro-
duces the information given by the sensor is given.

3.3.1. Column model and inlet concentration profile
As already explained in the introduction, a systematic com-

parison of the computational load and the identifiability of the
parameters for the linear-driving force (LDF), the equilibrium dis-
persive and the kinetic model has been reported in [13]. From this
study, it follows that the kinetic model yields an appropriate com-
promise between these criteria. Hence this model is retained here.

The equations of the kinetic model for a chromatographic col-
umn are written as follows for the liquid phase:

∂ci

∂t
= −v

∂ci

∂z
− 1 − ε

ε

∂qi

∂t
(1)

with ci, the fluid concentration; qi, the solid concentration; v, the
fluid velocity; ε, the porosity. t denotes the time and z, the axial
coordinate. i = A, B refers to the species in the mixture to separate.

For the solid phase, the mass balance is given by:

∂qi

∂t
= ki

relv(qeq
i

− qi) (2)

with krel
i

, the relative mass transfer coefficient, and qeq
i

, the adsorbed
equilibrium concentration.

The ideal shape of the inlet concentration profile should be a
rectangle but dispersion phenomena affect significantly the profile.
In this study, the inlet concentration profile is described as follows:

If t < tdin
then

ui(t) = 0

else
if t < (tp + tdin

) then

ui(t) = cF,i

(
1 − exp

(−(t − tdin
)

ttr

))

else

ui(t) = cF,i

(
1 − exp

(−(t − tdin
)

ttr

))

− cF,i

(
1 − exp

(−((t − tdin
) − tp)

ttr

))
(3)

with cF,i, the injected concentration of component i, i = A, B, tp, the
injection duration and ttr, a constant characterizing the rise time
of the pulse. tdin

is the time delay due to the dead volume between
the injection pump and the SMB process, tdin

= Vdin
/Q with Vdin

, the
dead volume located before the column and Q, the feed flow rate.
It is implicitly assumed that injection starts at t = 0 s.
3.3.2. Isotherm model
The adsorbed equilibrium concentration is related to the

liquid-phase concentration by an adsorption equilibrium relation.
Many multicomponent non-linear isotherm equations have been
described. As the type of isotherm equation is not a priori known
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n this study, the obvious first choice is the competitive Langmuir
sotherm. The corresponding equation is the following:

eq
i

= qSibici

1 + bAcA + bBcB
(4)

here qSi and bi are respectively the saturation capacity and the
quilibrium constant of component i, i = A, B.

Note that at infinite dilution, the Langmuir isotherm reduces to
linear relation with slope Hi, where Hi = qSibi.

.3.3. Measurement equation
As already explained, the data are collected at the end of the

olumn with a UV detector. In this study, the resulting UV signal is
weighted sum of the concentration of the two products. Letting

i(t, z, cF,i,�), denote the solution of Eqs. (1), (2), (4) for input (3),
or data set S�, �= 1, 2, the measurement equation, reproducing the
nformation given by the sensor, can be written:

S�
(t) = cA(t, L, cF,i,�)UV(A) + cB(t, L, cF,i,�)UV(B) (5)

here L is the column length. UV(A) (UV(B)) is the calibration coef-
cient of component A (B). It is easily determined by injecting
uccessive step changes of known concentration of component A
B).

.4. Unknown parameters

In Eqs. (1)–(5), the parameters are the fluid velocity, the poros-
ty, the mass transfer coefficients, the injected concentrations,
he injected volume, the dead volume, the isotherm parameters
nd the UV calibration coefficients. The velocity is obtained
rom the fluid flow rate. The porosity is calculated as described
n [15] by using the elution peak of a non-retained product (a
olution of thiocarbanide). The injected concentrations are cho-
en by the user. Note that even if the injected concentrations
re chosen equal for component A and B, both concentrations
re considered separately in this study as they are prepared
ndependently and thus affected by uncorrelated errors. The
njected volume is defined by the volume of the injection valve.
he dead volume is a known process characteristic. The UV cali-
ration coefficients are obtained from simple experiments [16].
ll these known parameters will be gathered in the vector �(k):
(k) = [Q Vinj cF,A(k) cF,B(k) UV(A) UV(B) ε Vdin

]T , k =
, . . . , MT . As two experiments are performed with different
rocess working modes, which differ, in this study, by the

njected concentrations, this vector of parameters is a function
f the measurement point k through cF,i(k) = cF,i,1 for k = 1, . . .,
1 and cF,i(k) = cF,i,2 for k = M1 + 1, . . ., MT, i = A, B. The vector

v =
[

�(1)T . . . �(MT )
T
]T

will also be used subsequently. The

stimated value obtained from simple experiments is called
ˆv =

[
�̂(1)T . . . �̂(MT )T

]T
.

The parameters are now grouped into two classes, those which
an be assumed to be perfectly known and those which are sub-
ect to an estimation error. Vdin

, the dead volume, is assumed to
e known without error as it is a known process characteristic.
he other elements of �(k), k = 1, . . ., MT, may be corrupted by
ome errors. Indeed, for example, the precision of the pump is lim-
ted or the measurement of the calibration coefficients may not be
erformed without error. However, as the batch experiments are
erformed on one SMB column, the porosity is also supposed to
e known without error. Indeed, in [17], it is demonstrated that,
f erroneous porosity is used in the determination of the isotherm
arameters from batch experiments, these parameters will not be
orrectly estimated but they will nevertheless be able to describe
uite accurately the propagation of the elution fronts. Hence, in
his study, the error on the porosity will be neglected during the
A 1217 (2010) 7359–7371

identification of the unknown parameters from one SMB column.
Consequently, for the identification step, two vectors will be used:

• one containing the parameters assumed to be known without
error: �we = [Vdin

ε]T ;
• another with the parameters which may be corrupted by some

errors: �e(k) = [Q Vinj cF,A(k) cF,B(k) UV(A) UV(B)]T, k = 1, . . ., MT.

The vector �ev =
[

�e(1)T . . . �e(MT )T
]T

will also be used subse-
quently.

Hence, �(k) = [�e(k)T �T
we]

T
, k = 1, . . . , MT .

The other parameters, namely the mass transfer coefficients
and the isotherm parameters, are identified following the method
described in [13]. The vector of identified parameters is defined as
� = [ krel

A krel
B HA HB bA bB ]

T
.

In order to introduce the dependence on � and �v, the simulated
outputs, resulting from Eq. (5), will be: yS�

(t, �, �̂v).
In the following, the measurements and the simulations will be

gathered in vectors of length MT, MT =
2∑

�=1

M�:

ymes = [ ymesT

S1
ymesT

S2
]
T

where ymes
S�

=
[ ymes

S�
(t�(0)) . . . ymes

S�
(t�(M� − 1)) ]

T
with �= 1, 2, and

y(�, �̂v) = [ y1(�, �̂v(1 : M1))
T

y2(�, �̂v(1 + M1 : MT ))
T ]

T
where

y1(�, �̂v) = [ yS1 (t1(0), �, �̂(1)) . . . yS1 (t1(M1 − 1), �, �̂(M1)) ]
T

and

y2(�, �̂v) = [ yS2 (t2(0), �, �̂(M1 + 1)) . . . yS2 (t2(M2 − 1), �, �̂(MT )) ]
T
.

t�(h) < t�(h + 1), and h = 0, 1, . . ., M�−1. Hence the kth measure-
ment used for identification is labelled: ymes(k) and the kth element
of vector y(�, �̂v) is labelled y(k, �, �̂(k)), where k = 1, . . ., MT.

3.5. Statement of the identification problem

As described in [13], the unknown parameters are determined
by minimizing a measure of the deviation between the experimen-
tal profiles and the profiles simulated with the chromatographic
model.

The latter are obtained by solving numerically Eqs. (1)–(4) fol-
lowing the method of lines [18]. First, the spatial operators are
approximated using a finite difference scheme on a spatial grid.
Then the resulting system of semi-discrete ODEs is integrated in
time [6]. The solution is introduced in the measurement Eq. (5) to
give the simulated measurement signal. Solutions obtained for both
data sets are introduced in a vector y(�, �̂v), as proposed in Section
3.4.

To specify the parameter estimation problem, it is necessary to
describe the constraints on the parameters and the cost functions.

For each unknown parameter, the prior knowledge allows one
to specify an interval within which the estimated value must
lie: �(j)inf < �(j) < �(j)sup. To enforce these constraints, the follow-
ing non-linear transformation is performed on each parameter
[19]:

�(j) = 0.5(�(j)sup + �(j)inf + (�(j)sup − �(j)inf ) tanh(�∗(j))) (6)

with �(j), the jth parameter to identify, and �*(j) ∈ �, the
parameter which is actually determined by numerical opti-

mization. This way, an unconstrained optimization problem
results, which can be solved using the technique presented in
Section 3.6 below. Note that, for simplicity, by an abuse of
notation, y(�, �v) is written y(�∗, �v) after parameter transforma-
tion.
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Two cost functions are considered. The first one is defined as:

cl(�∗, �̂v) =
M1∑
k=1

C1(ymes(k) − y(k, �∗, �̂(k)))
2

+
M2∑

k=M1+1

(ymes(k) − y(k, �∗, �̂(k)))
2

(7)

ith ymes(k), the kth measurement value, y(k, �∗, �̂(k)), the cor-
esponding model ouput prediction, and M�, the number of
easurements of the data set S�, �= 1, 2. C1 is a constant that ensures

hat each data set has the same importance in the cost function:
1 = max(ymes

S2
)/max(ymes

S1
).

The second cost function helps considering the output error in
relative sense [16]:

ln(�∗, �̂v) =
M1∑
k=1

R1(ln(ymes(k)) − ln(y(k, �∗, �̂(k))))
2

+
M2∑

k=M1+1

(ln(ymes(k)) − ln(y(k, �∗, �̂(k))))
2

(8)

1 is a constant that ensures that each data set has the same impor-
ance in the cost function: R1 = max(ln(ymes

S2
))/max(ln(ymes

S1
)).

Note that, to avoid having an infinite value of the cost function
hen using expression (8), a lower bound saturation of the values

f ymes(k) and of y(k, �∗, �̂(k)) is performed:

if ymes(k) < ysat, ymes(k) = ysat

or if y(k, �̂∗, �̂(k)) < ysat y(k, �̂∗, �̂(k)) = ysat

here ysat > 0.
The results obtained with both cost functions will be compared

n the following.

.6. Solution of the parameter estimation problem

In this section, the optimization method and the identification
rocedure are first presented. The calculation of the confidence

nterval follows.

� = 2

MT∑
k=1

MT∑
k∗=1

gT
�e(k∗)(k

∗, �̂∗, �̂e(k∗))Q �e (k∗, k)g�e(k)(k
∗, �̂∗, �̂e(

	 =
MT∑
k=1

MT∑
k′=1

MT∑
k∗=1

gT
�e(k)(k

∗, �̂∗, �̂e(k∗))Q �e (k, k′)g�e(k′)(k
∗, �̂∗, �̂

˚ =
MT∑

k∗=1

gT
�∗ (k∗, �̂∗, �̂e(k∗))P̂MT

[
MT∑

k′=1

MT∑
k=1

g�∗ (k, �̂∗, �̂e(k))w(k)

P̂MT
g�∗ (k∗, �̂∗, �̂e(k∗))

˝ = P̂MT

[
MT∑

k′=1

MT∑
k=1

g�∗ (k, �̂∗, �̂e(k))w(k)gT
�e(k)(k, �̂∗, �̂e(k))Q �e
.6.1. Optimization method
The optimization method used in this study is an algorithm

or unconstrained optimization by quadratic approximation devel-
ped by Powell and called UOBYQA [20].
A 1217 (2010) 7359–7371 7363

3.6.2. Multistart procedure
A multistart procedure is executed to alleviate the problem of

local minima. It consists in performing 2n identification runs, with
n, the number of parameters. Each run corresponds to a different
initial value of the estimated parameter vector, �∗r

0 (r = 1, . . ., 2n).
The latter are calculated after the following steps:

1. �̂init , a rough approximation of the parameters, is obtained from
classical experimental method selected in [13] applied directly
on data set S1 and S2;

2. ��̂init , an upper bound of the error on �̂init , is estimated as
described in [21];

3. �r
0, r = 1, . . . , 2n corresponds to the vertices of a hyper-

parallelepiped centred around �̂init with edge length equal to 2
��̂init;

4. �∗r
0 is obtained by parameter transformation (6) of �r

0.

Each identification run yields an estimated parameter value
denoted �̂∗r , or after transformation by Eq. (6), �̂r , r = 1, . . . , 2n.
The associated value of the minimum cost function will be denoted
Jr
min, r = 1, . . . , 2n. Next Jmin is calculated from min

r
Jr
min and �̂min is

the parameter value for which Jmin is reached. As it corresponds to
the smallest cost function obtained, �̂min is used subsequently for
validation tests.

3.6.3. Confidence interval
The confidence interval on the estimated parameters, �̂∗

min, is

estimated taking the error on the a-priori estimated parameter �̂v
into account. To this end, the calculation of the covariance matrix
on the basis of the asymptotical theory [22] is adapted. The devel-
opment has been presented in [16] and a brief summary is given in
Appendix A. The estimation of the covariance matrix of the param-
eter error is calculated as follows:

Cov = Ê(�̃∗�̃∗T )

= P̂MT

Jmin(�̂∗, �̂v) − � + 	 + ˚

MT −
MT∑
k=1

gT
�∗ (k, �̂∗, �̂e(k))P̂MT

g�∗ (k, �̂∗, �̂e(k))

+ ˝ (9)

where

(k∗)

)w(k∗)

(k, �̂∗, �̂e(k))Q �e (k, k′)g�e(k′)(k
′, �̂∗, �̂e(k′))w(k′)gT

�∗ (k′, �̂∗, �̂e(k′))

]

)g�e(k′)(k
′, �̂∗, �̂e(k′))w(k′)gT

�∗ (k′, �̂∗, �̂e(k′))

]
P̂MT

with �̃, the estimation error: �̃∗ = �̂∗ − �∗
tr , �∗

tr , the true value of the
parameter,

∗

g�∗ (k, �∗, �e(k)) = ∂y(k, � , �e(k))

∂�∗ ,

g�e(k)(k, �∗, �e(k)) = ∂y(k, �∗, �e(k))
∂�e(k)
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Table 1
Separation and experimental set-up characteristics.

ε UV(A) UV(B) C1 tdin
(s) Flowrate Q (ml/min) ttr (s) cF,A,1 = cF,B,1 (vol%) cF,A,2 = cF,B,2 (vol%) Injected volume (ml)

0.6 0.1991 0.1919 41.31 20 30 0.1 0.12 6 2

Table 2
Batch identification conditions.

�̂init ��̂init/�̂init �inf �sup ysat C1 R1 M1 M2⎡
⎢ 1466

1015
3

⎤
⎥
⎡
⎢ 0.3

0.3
0.1

⎤
⎥

⎡
⎢ 0

0
0

⎤
⎥
⎡
⎢ 4235

4235
10
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⎥
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in SMB processes for control methods based on the position of the
fronts. However, at this stage, it is difficult to conclude from batch
experiments. Results must be compared in SMB mode.

0.3
⎢⎣ 6.96
0.24
0.56

⎥⎦ ⎢⎣ 0.1
0.3
0.3

⎥⎦ ⎢⎣ 0
0
0

⎥⎦ ⎢⎣ 10
1
1

⎥⎦ 1e−3 41.3 3 316 455

k = 1, . . . , MT . P̂−1
MT

=
MT∑
k=1

g�∗ (k, �̂∗, �̂e(k))gT
�∗ (k, �̂∗, �̂e(k))w(k).

he covariance matrix of the error on the estimate of �̂e(k) is called
�e (k, k′). w(k) corresponds to the weighting factors. For the cost

unction Jcl, w(k) =
√

C1 for k ≤ M1 and w(k) = 1 for k > M1. For the

ost function Jln, w(k) =
√

R1 for k ≤ M1 and w(k) = 1 for k > M1.

Hence, the confidence interval at 65% on �̂∗(j), the jth compo-
ent of �̂∗ (j = 1, . . ., n), is calculated as: �̂∗(j) ±

√
Cov(j, j). Then,

ransformation (6) is applied to find the confidence intervals on
ˆ(j).

.7. Batch identification from experiments

In this section, the results of the identification from batch exper-
ments performed on the plant described in Section 2 are presented.

Table 1 gives the separation and set-up characteristics for the
ealized elution experiments and Table 2 shows the identification
onditions.

The following notations are now introduced: �̂min represents
he parameter identified with the cost function Jcl and �̂ln

min the
arameter identified with the cost function Jln. The results of the

dentification performed with the two cost functions Jcl and Jln are
hown in Table 3. Both cost functions Jcl and Jln give very sim-
lar results for parameters Ĥi min and b̂i min, i = A, B, whereas,
arameters k̂rel

i min are significantly different. Moreover, the identi-
ed parameters corresponding to the linear part of the isotherm
nd describing the behaviour at low concentration, ĤA min and

ˆ B min, are close to the initial ones, ĤA init and ĤB init .
Figs. 3 and 4 show the experimental profiles as well as the peaks

imulated with �̂init and with �̂min for both cost functions. Note that
ata sets, S1 and S2 used together for identification, are shown here

eparately for sake of clarity. These figures help to validate our iden-
ification approach. Note that the simulations are only compared
ith data that have been used for parameter estimation. It should

e interesting to validate the method with other experimental sets,
ut, unfortunately, data recorded at other process working modes

able 3
atch identification results Jcl

init
/(M1 + M2) = 1.2e − 4; Jcl

min
/(M1 + M2) = 2.81e −

; Jln
init

/(M1 + M2) = 4.14; Jln
min

/(M1 + M2) = 6.7e − 2.

�̂init �̂min �̂ln
min

krel
A

(m−1) 1466 1546 953.1
krel

B
(m−1) 1015 1000.8 720.1

HA 3 3.05 3.075
HB 6.96 7.1 7.09
bA (vol%)−1 0.24 0.215 0.21
bB (vol%)−1 0.56 0.66 0.65
Fig. 3. Results of parameter estimation for column 2 with data set S1; ••• experi-
mental profile; y(k, �̂min, �̂(k)); y(k, �̂ln

min
, �̂(k)); y(k, �̂init , �̂(k)), k = 1,

. . ., M1.

are not available. Nevertheless, the method will be validated with
SMB experiments.

The simulated profiles obtained with the parameters identified
with Jcl are different from those simulated with the parameters
estimated with Jln. On the one hand, in general, the cost function Jln

gives profiles for which the bottom of the desorption fronts (as seen
in the rectangles) are close to the experimental profiles. However,
the top of the peaks (as seen in the circles) is not well reproduced at
low concentration (data set S1). On the other hand, results obtained
with cost function Jcl provide peaks with a general shape (height
and position) similar to the experimental ones, although the shape
of the desorption fronts obtained with cost function Jln is better. The
good reproduction of the shape of the fronts may be a advantage
100 150 200 250 300
0

0.05

0.1
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time (s)

y,
 y

m
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Fig. 4. Results of parameter estimation for column 2 with data set S2; ••• experi-
mental profile; y(k, �̂min, �̂(k)); y(k, �̂ln

min
, �̂(k)); y(k, �̂init , �̂(k)), k = 1,

. . ., M1.
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Table 4
Upper bounds of the confidence intervals (65%).

Cost function Jcl Cost function Jln

krel
A

(m−1) [266; 3515] [677; 1296]
krel

B
(m−1) [84; 3473] [508; 974]

HA [2.8; 3.27] [3; 3.15]
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Q

HB [6.4; 7.7] [6.9; 7.3]
bA (vol%)−1 [0.13; 0.32] [0.13; 0.3]
bB (vol%)−1 [0.32; 0.89] [0.49; 0.78]

The upper bounds of the confidence intervals at 65% are given
n Table 4 for both cost functions. Details about the estimation of
�e are given in appendix 8.2. of [16]. The confidence intervals are

arger for the cost function Jcl than for the cost function Jln. How-
ver, the intervals are probably overestimated. It is possibly due to
he numerous assumptions performed to obtain Eq. (9), notably a
umber of samples that tends to infinity (cf. Appendix A). As batch
lution profiles are less sensitive to the mass transfer coefficients,
he confidence interval is larger for the mass transfer coefficients
han for isotherm parameters.

. SMB modelling

In this section, the modelling of the SMB processes is dis-
ussed in order to build the model that will be used to validate
he identification approach. The simulation results and SMB exper-
ments will be compared in Section 5 in order to verify whether
he parameters identified from batch experiments may be used in
SMB model

In the experiments and simulations considered in the SMB oper-
ting mode, the start-up of the plant coincides with the beginning of
he injection of continuous feed flow in the process filled with sol-
ent. Each experiment is performed with fixed working conditions
constant injected concentrations, constant flow rates and constant
witching time).

First of all, the model of a SMB column is considered. Next, the
witching mechanism is modelled as well as the dead volumes
ithin the process. Finally, the inlet concentration profile and the
easurement equations are described.

.1. Column modelling

To perform the validation, a SMB kinetic model is needed. For
ach column of the SMB plant, Eqs. (1), (2) and (4) are valid.

.2. Switching

For simplicity, the fixed referential is associated to the columns.
ence, the switching is modelled by the movement of the inlet
nd outlet ports and hence by the change of the flow rate in each
olumn. To perform this, a vector which contains the flow rate in
ach column is defined: Q = [ Q1 . . . Q8 ].

At the start-up,

0
1 = Q 0

2 = QI; Q 0
3 = Q 0

4 = QII; Q 0
5 = Q 0

6 = QIII;

0
7 = Q 0

8 = QIV with QIII = QII + QF and QI = QIV + QS

here Qz is the flow rate in zone z, z = I, . . ., IV, QF, the feed flow rate
nd QS, the solvent flow rate.
Valve switching is taken into account by considering that the
owrate in column m during a switching period is equal to the
owrate in column m − 1 during the previous period:

ns
m = Q ns−1

m−1 (10)
A 1217 (2010) 7359–7371 7365

where ns denotes the number of switches performed since the start-
up. The velocity in column m is recalculated from Qm after each
switching for use in Eqs. (1) and (2).

4.3. Extra-column dead volumes modelling

4.3.1. General equation
As explained in [2,7,9], it is important to model the dead volumes

introduced by the valves, the connecting tubes and the pumps. It is
especially the case in this experimental set up where some pumps,
UV detectors, capillaries replacing columns and long connections
are placed in the circulating loop between the columns (cf. Fig. 2).

The mass balance equation for component i, i = A, B, in the dead
volume d is calculated as follows [9]:

∂ci,d

∂t
= −vd

∂ci,d

∂zd
+ Dd

∂2ci,d

∂zd
2

. (11)

with vd, the velocity in dead volume d; Dd, the diffusion coefficient
in dead volume d.

As most of the dead volume consists of tubes where plug flow
conditions may be considered, Dd is very small (≈1e−9 m2/s).

4.3.2. Movement of the dead volumes in the circulating loop
In [9], the dead volume surrounding a column is divided into

two parts: one located before the column, another after. However,
some dead volumes switch from one section to the other, like the
columns, while others stay in the same section all the time. For
example, in the studied experimental plant, as seen in Fig. 2, some
dead volumes move, as the ones associated to UV3 and UV4 detec-
tors, and others, which are not negligible, as the ones associated to
the pumps and their connectors, are fixed. Hence, it is proposed to
consider these different behaviours in the model. As seen in Fig. 5,
at the nth switching period, the dead volume at position p is divided
into four parts, two moving ones, and two fixed ones:

• the dead volume Vcol,b
d,m

is located before column m and corre-
sponds to the connection between the valve and column m or
to the inside of the valve; this dead volume switches with the
column at each sampling time;

• the dead volume Vcol,af
d,m

is located after column m and corresponds
to the connection between the column m and the valve or to the
inside of the valve; this dead volume moves with the column at
each sampling time;

• the dead volume Vport,b
d,p

is situated before column m and corre-
sponds to the pumps, P1 and P2, and connections from the inlet
ports; this dead volume does not move;

• the dead volume Vport,af
d,p

is situated after column m and corre-
sponds to the connections to the outlet ports or to the pumps P1
and P2; this dead volume does not move.

Hence, if the fixed referential is associated to the columns, the
movement of the dead volumes associated to the inlet and out-
let ports, Vport,b

d,p
and Vport,af

d,p
, is modelled by considering that the

concentration profiles in dead volumes Vport,b
d,p

and Vport,af
d,p

, at the
beginning of a switching interval, are equal to the profiles obtained
in the dead volume Vport,b

d,p−1 and Vport,af
d,p−1 at position p − 1 at the end

of the previous period, which gives in each dead volume:

ci,d,p(tns
s = 0, zdp) = ci,d,p−1(ts

ns−1 = �t, zdp−1) (12)
with ci,d,p, the concentration of component i in the dead volume
considered at position p. zd is the axial coordinate in the dead vol-
ume. �t is the switching period and ts

ns is the time elapsed since
the ns

th switch.
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unit described in Section 2 for three operating conditions (case I to
III) described in Table 5.

On the other hand, simulations have been performed with �̂min

or �̂ln
min, estimated in Section 3.7 and a-priori known parameter vec-

Table 5
Operating conditions.

Case I II III

Feed concentration (vol%) (c = c ) 1.456 1.456 0.73
m,dV Col

Fig. 5. Schematic representation of the dead volu

Note that, as explained in the introduction and illustrated in
ig. 2, there are only 8 columns instead of 12 and the free ports
re connected by short capillaries. In this case, if position p is not
ccupied by a column, Vcol,b

d,m
and Vcol,af

d,m
are directly connected and

nclude the dead volume of the capillary.
This approach for modelling extra-column dead volumes is val-

dated with experimental data in Section 5.

.4. Inlet concentration profile

The start-up of the plant coincides with the beginning of the
njection of a continuous feed flow in the process filled with sol-
ent. In the inlet concentration profile, a time delay is introduced
o take into account the dead volume between the feed tank and
he SMB unit. This delay may influence the concentration profiles
t start-up and postpone the establishment of the cyclic steady-
tate. Moreover, the ideal shape of the injection front should be
ectangular but dispersion phenomena significantly affect the pro-
le. Hence, the inlet concentration profile of component i, i = A, B,
an be described as follows:

if t < tdin

ui(t) = 0
else

ui(t) = cF,i(1 − exp(−(t − tdin
)/ttr))

(13)

here tdin
= Vdin

/QF with QF, the feed flow and Vdin
, the dead vol-

me before the SMB unit. cF,i is the feed concentration of component
, i = A, B.

.5. Boundary conditions

The boundary conditions in the liquid and solid phase are
btained by expressing simple mass balances and simple advection
quations for each component i (i = A, B) at the transition between
wo dead volumes or between a dead volume and a column. They
ave the same form as those given in [6] for transition between two
olumns.

.6. Model parameters

As for the batch case, for each measurement signal, vectors of
-priori known parameters are defined. As the four UV detectors
sed (see Fig. 2) do not have the same calibration coefficients, four
arameter vectors �ı

SMB, ı = 1, . . ., 4, are defined:

ı
SMB = [QI QII QIII QIV �t ε1 . . . ]
εNC
Vd cF,A cF,B UVı(A) UVı(B)

T

ith Nc, the number of columns and UVı(i), the UV calibration coef-
cient of detector ı for component i, i = A, B. Vd is a vector containing
he dead volumes of the SMB unit.
m af,col
m,dV

urrounding a column in the considered SMB unit.

4.7. Measurement equations

The measurement equation is written for detector ı, ı = 1, . . .,
4 :

yı(t, �, �SMB
ı ) = cA,d(t, Ld, �, �SMB

ı )UVı(A)

+ cB,d(t, Ld, �, �SMB
ı )UVı(B) (14)

with ı, the sensor number, ci,d, i = A, B, the concentration of compo-
nent i in the dead volume before the UV detector. Ld is the length
of this dead volume.

UV detectors situated on the extract and raffinate outputs are
fixed. However, UV3 and UV4 are moving: the first follows the dead
volume Vcol,af

d,p
after column 2, the second is placed after the dead

volume Vcol,af
d,p

after column 6.

4.8. Numerical solution of the model equations

Like for the batch equations, Eqs. (1), (2) and (4) with (10) to (13)
are solved numerically following the method of lines [18]. First, the
spatial operators are approximated using finite difference schemes
on a spatial grid. Then the resulting system of semi-discrete ODEs
is integrated in time [6].

5. Validation with SMB experiments

In this section, a validation is performed with SMB experi-
ments to verify the effectiveness of the identification method and
of the modelling of the movement of the dead volumes. First the
parameters identified in Section 3 are introduced in the model
described in Section 4 to simulate the behaviour of the SMB pro-
cess. The obtained concentration profiles are then compared with
experimental profiles. Then, a confidence envelope is estimated to
evaluate the simulation errors.

5.1. Comparison of concentration profiles

On the one hand, SMB experiments have been performed on the
F,A F,B

Switching time (s) 150 130 150
QII (ml/min) 15.6 28.7 15.6
QIV (ml/min) 17.9 27 17.2
QF (ml/min) (feed flow rate) 10.6 8.4 10.6
QS (ml/min) (solvent flow rate) 32.5 31.3 32.5
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Fig. 8. Case I: detector UV3 signal; 5th switching period of the 4th cycle;•
and + experiments; simulation with �̂min, simulation with �̂min with modi-
fied flow rates (cf. Table 6).

Table 6
Flowrates applied in Fig. 7 (Q: flow rates of case I; Qı: modified flow rates).

Q (ml/min) Qı (ml/min) �Q/Q (%)

- As seen, in Figs. 9 and 10, the best way to reproduce the amplitude
of the concentration signals and the “bumps” in the concentra-
tion profiles is to consider that some dead volumes are moving
and others are fixed during switching. Moreover, Fig. 9 shows
that the change of the amplitude of the extract peak, due to the
ig. 6. Case I: UV1 signal (extract); 8th switching period of the 5th cycle; • and
experiments; simulation with the initial parameters; simulation with �̂min,

simulation with �̂ln
min

.

or, �̂SMB
ı

, ı = 1, . . . , 4. The latter are built from Table 5 which gives
he operating conditions, and Tables A.1–A.3 in the appendix which
ive the UV calibration factors and the values of the dead volumes.
he porosities of all the columns are assumed to be equal to the
orosity of column 2.

Results of simulations and experiments are, now, compared in
rder to verify if the parameters determined with batch experi-
ents may be used in a SMB model.
Note that, here, only three operating conditions are considered

nd all the UV signals corresponding to these operating points are
ot shown. But similar results have been obtained for the other UV
ignals and for other operating conditions.

Figs. 6 and 7 show the comparisons between the measurements,
he signals simulated with the initial parameter value �̂init , and
ith the parameters, �̂min and �̂ln

min, identified with the cost func-
ion Jcl and the cost function Jln respectively. In Fig. 6, the extract
ignal (UV1) is given for case I. Note that the experiments corre-
ponding to case I have been performed twice in order to check
he reproducibility. In Fig. 7, the signal recorded with detector UV3
s represented for case II. Fig. 8 shows the simulated UV3 signal
btained at cyclic steady state for slightly modified flow rates in

ach section. This study has been performed in order to observe the
nfluence of the precision of the pump on the concentration pro-
les. Figs. 9 and 10 show the experimental profiles and the results
f simulations for different approaches to introduce the dead vol-
mes:
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ig. 7. Case II: detector UV3 signal; from 4th switching period of the 5th cycle;
experiments; simulation with the initial parameters; simulation with

ˆ
min; simulation with �̂ln

min
.

Zone I 50.4 49.9 1
Zone II 15.6 15.1 3
Zone III 26.2 25.7 2
Zone IV 17.9 17.4 2.3

(a) simulations performed with fixed and mobile dead volumes;
(b) simulations realised with all the dead volumes set to zero;
(c) simulations obtained with all the dead volumes attached to the

columns, as considered usually in the literature;
(d) simulations executed with all the dead volumes fixed.

Fig. 10 is a zoom of Fig. 9 on one permutation period.
From these figures, it can be concluded that:
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Fig. 9. Case III: UV1 signal (extract); 5 first switching period of the 4th cycle; • exper-
imental signal; simulations with �̂min: dead volumes fixed and moving; all
the dead volume moving; dead volumes neglected; all the dead volume
fixed.
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ig. 10. Case III: UV1 signal (extract); zoom of Fig. 9; • experimental signal; sim-
lations with �̂min: dead volumes fixed and moving; all the dead volume
oving; dead volumes neglected; all the dead volume fixed.

unequal distribution of the dead volumes in the process, is also
well reproduced with fixed and moving dead volume which is
not the case with the other configurations. In Fig. 10, where the
switching appears at 3600 s, the delay of the apparition of the
abrupt front due to the dead volumes is also well reproduced.
This validates the approach proposed in Section 4 to model the
extra-dead volumes.
The parameters obtained with cost functions Jcl and Jln give similar
profiles. As the parameters differ essentially in the value of the
mass transfer coefficients, it can be concluded that the latter have
a low impact on the SMB concentration profiles studied here.
In all the figures, the signals simulated with identified parameters
give a good approximation of the measurements. The worst parts
of the simulation profiles are the fronts of the raffinate signals (cf.
Figs. 7 and 8). The differences between the experiments and the
simulation results may be explained by different causes:
• Modelling errors due to the isotherm equations, the choice of

boundary conditions [6] and the column model. For the latter,
a compromise has to be done. More rigorous models, taking
into account the pore diffusion and the axial diffusion like the
general rate model, exist [23]. However, the number of param-
eters is large which increases the difficulty to determine them
univocally.

• Errors in the calibration coefficients or small variations of
parameters among the columns.

• Experimental errors: as shown in Figs. 6 and 8, the reproducibil-
ity of the measurements is not perfect and some experimental
errors due to inaccuracies in the flow rates or in the preparation

Ê(ỹı(k)ỹı(k)T )
up =

⎛
⎝
√√√√ ∂yı(k, �∗, �ı

SMB)
T

∂�∗

∣∣∣∣∣
�∗=�̂∗, �ı

SMB=�̂SMB
ı

+

√√√√ ∂yı(k, �∗, �ı
SMB)

T

∂�ı
SMB

∣∣∣∣∣
∗ ˆ∗ SMB ˆSMB

Q

of the solutions should also be considered. For example, the
largest differences observed in Fig. 8 may be explained by a

� =� ,�ı =�
ı

Fig. 11. Case I: detector UV3 signal;* and · · · experiments; simulation with
�̂min, bounds of the estimated confidence interval with the cost function Jln;

bounds of the estimated confidence interval with the cost function Jcl .

lack of precision of the flow rates of the SMB plant. Indeed, as
seen in Fig. 8, simulation results with smaller internal flow rates
(with output and input flows not changed) are closer to the
experimental signal.

• Errors in the modelling of dead volumes where plug flow is
assumed.

• Errors in the values of the dead volumes.
• Error in the modelling of the permutation which is not abrupt

in practice.
- Moreover, the signals simulated with �̂min are close to the one

obtained with �̂init . Indeed, the concentrations obtained at the
outputs are not very high and, as already observed in batch,
the initial parameters corresponding to the linear part of the
isotherm and describing the behaviour at low concentration,
ĤA init and ĤB init , are close the identified ones, ĤA min and ĤB min.
However, a significant improvement of the profile is shown at
higher concentration (in the circle in Fig. 7). Indeed parameters
bA and bB which correspond to the nonlinear behaviour, more
important at high concentration, are significantly different after
identification.

5.2. Confidence envelope

As seen in the preceding section, the introduction of the identi-
fied parameters in a model allows to simulate the behaviour of the
process. However as there is an error on the estimated parameters,
there is also an error on the results of the simulation:

ỹı(k) = yı(k, �̂∗, �̂SMB
ı ) − yı(k, �∗

tr , �SMB
ı tr ).

with �SMB
ı tr

, the true value of parameter �ı
SMB, ı = 1, . . ., 4.

An upper bound for the confidence envelope may be estimated,
as presented in [16], taking the covariance matrix of both �̃∗ and
�̃SMB

ı
into account:

�̃∗T )
∂yı(k, �∗, �ı

SMB)
∂�∗

∣∣∣∣
�∗=�̂∗,�ı

SMB=�̂SMB
ı

, k)
∂yı(k, �∗, �ı

SMB)
SMB

∣∣∣∣
⎞
⎠

2

k = 1, . . . , MT (15)
ı

Ê(�̃∗�̃∗T ) is obtained as explained in Section 3.6.3. Q�e (k, k) is
estimated from the knowledge available on the process and experi-
mental estimation error. The upper (lower) bound of the confidence
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nvelope at 65% is then obtained by adding (subtracting) the quan-

ity ỹı(k) =
√

Ê(ỹı(k)ỹı(k)T )
up

to ySMB
ı

(k, �̂, �̂SMB
ı

).
Note that, it is supposed that a “true” model exists to apply Eq.

15).
Fig. 11 compares the confidence envelopes for a concentration

rofile simulated with parameters identified with the cost function
ln and for the cost function Jcl.

Some conclusions may be drawn from these plots:

the confidence envelopes obtained with the cost function Jln are
in general smaller than those obtained with the cost function Jcl;
the experimental data are, in general, contained in the estimated
confidence envelope;
the largest subset of the experimental data which is not contained
in the confidence envelope corresponds to the raffinate fronts (in
the pink circle of Fig. 11). As seen in Section 5.1, the latter are
poorly simulated;
the parts of the signal with a larger confidence envelope corre-
spond to parts of the profiles where the reproducibility of the
experiments is the worst (in the pink circle of Fig. 11).

. Conclusions

In this work, a systematic procedure to estimate the isotherm
arameters and the mass transfer coefficients of a SMB kinetic
odel is validated with experimental data. First of all, the param-

ters are estimated from two elution peaks, one at a small
oncentration, and another at a higher concentration. The confi-
ence intervals are also estimated for each parameter. Then, these
arameters are introduced in a SMB model so as to assess whether
he parameters identified from batch experiments may be used in
SMB model. To this end, the introduction of the fixed and mov-

ng dead volumes in the SMB model turns out to be necessary. The
alidation with SMB data is then performed with success.

Hence, the contribution of this work is twofold:

A systematic procedure to estimate parameters of a SMB model
is validated.
An approach to model dead volumes with fixed and moving parts
is proposed.

Both contributions allow simulating the SMB concentration pro-
les with a good accuracy.
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ppendix A. Calculation of the covariance matrix

A summary of the main steps of the calculation of the estimated
ovariance matrix, Ê(�̃∗�̃∗T ), given in Section 3.6.3, is presented
ere. The error on the estimate of �̂e(k), k = 1, . . . , MT , is taken
nto account.
Consider the measurements ymes(k)

mes(k) = y(k, �∗
tr , �etr (k)) + e(k) k = 1, . . . , MT (A.1)

ith �etr (k), the true value of the parameter �e(k).
A 1217 (2010) 7359–7371 7369

The error on the estimate of �̂e(k) is defined as: �̃e(k) = �̂e(k) −
�etr (k)

First, some definitions and assumptions are presented:

• The error is zero-mean:

E(e(k)) = 0 ∀ k ∈ [1 : MT ] (A.2)

• The error is white:

E(e(k)e(k′)) = 
2
e ı(k − k′)w−1(k) (A.3)

• The estimation, �̂e(k), is unbiased:

E(�̃e(k)) = 0 (A.4)

• The covariance matrix of �̃e(k) is denoted:

E(�̃e(k)�̃e(k′)T )) = Q �e (k, k′) (A.5)

• Sensitivities respectively to �* and �e(k) are defined as:

g�∗ (k, �∗, �e(k)) = ∂y(k, �∗, �e(k))
∂�∗ (A.6)

g�e(k)(k, �∗, �e(k)) = ∂y(k, �∗, �e(k))
∂�e(k)

(A.7)

Note that the error e(k) is defined in (A.1), with ymes(k), k = 1, . . ., MT,
corresponding to measurements of elution peaks. Parameters �e(k),
k = 1, . . ., MT, correspond to the flow rate, the calibration coefficients
and the injected concentrations and volume which are respectively
imposed by the pump, determined by simple experiments, pre-
pared by the user (see Section 3.4) and injected manually. Hence,
the distribution of e(k) and of �e(k) are uncorrelated:

E(�̃e(k)e(k′)T )) = 0 ∀ k, k′ = 1, . . . , MT (A.8)

The confidence interval on �̂∗ is calculated through these steps:
1. Calculation of the expression of �̃∗ The estimation of �̃∗ is

obtained from the optimality condition:

∂J(�∗, �̂ev )
∂�∗

∣∣∣∣
�∗=�̂∗

= −2

MT∑
k=1

(ymes(k) − y(k, �̂∗, �̂e(k)))g�∗

(k, �̂∗, �̂e(k))w(k) = 0 (A.9)

A Taylor series development of y(k, �̂∗, �̂e(k)) around
(k, �∗

tr , �etr(k)), where high order terms may be neglected, is
performed. Moreover, it is assumed that in the neighbourhood of
(�̂∗ ≈ �∗

tr , �̂e(k) ≈ �etr (k)),

gT
�∗ (k, �̂∗, �̂e(k)) ≈ gT

�∗ (k, �∗
tr , �etr (k)) and

gT
�e(k)(k, �̂∗, �̂e(k)) ≈ gT

�e(k)(k, �∗
tr , �etr (k)) (A.10)

The following expression is then obtained:

�̃∗ ≈ PMT

MT∑
k=1

g�∗ (k, �∗
tr , �etr (k))w(k)(e(k) − gT

�e(k)(k, �∗
tr , �etr (k))�̃e(k))

(A.11)
2. Calculation of (�̃∗�̃∗T )
This is performed by simple multiplication.
3. Calculation of the estimation of the expectation of �̃∗�̃∗T ,

Ê(�̃∗�̃∗T )
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Table A.1
Calibration factors of the UV detectors.

UVA UVB

Detector UV1 0.227 0.219
Detector UV2 0.206 0.199
Detector UV3 0.1991 0.1919
Detector UV4 0.215 0.207

Table A.2
Moving dead volume.

Position (at start-up) Vcol,b
D,p

(m3) Vcol,af
D,p

(m3)

1 1.88e−6 1.07e−6
2 1.88e−6 3.07e−6
3 0.95e−6 0.145e−6
4 1.88e−6 1.07e−6
5 1.88e−6 1.07e−6
6 0.95e−6 0.145e−6
7 1.88e−6 1.07e−6
8 1.88e−6 3.07e−6
9 0.95e−6 0.145e−6

10 1.88e−6 1.07e−6
11 1.88e−6 1.07e−6
12 0.95e−6 0.145e−6

Table A.3
Fixed dead volume.

Position (at start-up) Vport,b
D,p

(m3) Vport,af
D,p

(m3)

1 0.655e−6 0.925e−6
2 0.195e−6 0.925e−6
3 0.195e−6 2.235e−6
4 5.35e−6 0.925e−6
5 0.195e−6 0.925e−6
6 0.195e−6 0.605e−6
7 0.655e−6 0.925e−6
8 0.195e−6 0.925e−6

[
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The following result is obtained using assumptions and defini-
ions (A.1)–(A.8):

ˆ(�̃∗�̃∗T ) = P̂MT

2

e + P̂MT

[
MT∑

k′=1

MT∑
k=1

g�∗ (k, �̂∗, �̂e(k))w(k)

× gT
�e(k)(k, �̂∗, �̂e(k))Q �e (k, k′) g�e(k′)(k

′, �̂∗, �̂e(k′))

× w(k′)gT
� (k′, �̂∗, �̂e(k′))

]
P̂MT

(A.12)

4. Estimation of the covariance of e(k), 
2
e , to be used in the

xpression of Ê(�̃∗�̃∗T )
This estimation is obtained after 2 steps:

the calculation of Taylor series development of the cost function
J(�∗, �ev ) around �∗

tr ≈ �̂∗ and �etr (k) ≈ �̂e(k), k = 1, . . . , MT :

J(�∗
tr , �evtr

) ≈
MT∑
k=1

ê2(k)w(k)−
MT∑
k=1

∂J(�∗, �ev )

∂�e(k)T

∣∣∣∣∣
�̂∗,�̂e(k)

�̃e(k)

+
MT∑
k=1

gT
�∗ (k, �∗

tr , �etr (k))�̃∗�̃∗T g�(k, �∗
tr , �etr (k))w(k)

+
MT∑
k=1

MT∑
k′=1

MT∑
k∗=1

gT
�e(k)(k

∗, �∗
tr , �etr (k∗))�̃e(k)�̃e(k′)T g�e(k′)

(k∗, �∗
tr , �etr (k∗))w(k∗)

+2

MT∑
k=1

MT∑
k∗=1

gT
�e(k)(k

∗, �∗
tr , �etr (k∗))�̃e(k)�̃∗T g�(k∗, �∗

tr , �etr (k∗))w(k∗)

(A.13)

the calculation of the expectation of the preceding result:

T 
2
e = E

(
MT∑
k=1

ê2(k)w(k)

)
− 2

MT∑
k=1

MT∑
k∗=1

gT
�e(k∗)(k

∗, �∗
tr , �etr (k∗))

× Q �e (k∗, k)g�e(k)(k
∗, �∗

tr , �etr (k∗))w(k∗)

+
MT∑
k=1

gT
�∗ (k, �∗

tr , �etr (k))E(�̃∗�̃∗T )g�∗ (k, �∗
tr , �etr (k))w(k)

+
MT∑
k=1

MT∑
k′=1

MT∑
k∗=1

gT
�e(k)(k

∗, �∗
tr , �etr (k∗))

× Q �e (k, k′)g�e(k′)(k
∗, �∗

tr , �etr (k∗))w(k∗) (A.14)

5. Introduction of the covariance of e(k), Eq. (A.14), in Ê(�̃∗�̃∗T )

Eq. (A.12))

ppendix B.

Model parameters.

[

[

[

9 0.195e−6 2.695e−6
10 5.595e−6 0.925e−6
11 0.195e−6 0.925e−6
12 0.195e−6 0.605e−6
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